Search results for "amorphous films"

showing 3 items of 3 documents

Alkylsilyl compounds as enablers of atomic layer deposition: analysis of (Et3Si)3As through the GaAs process

2016

A new chemistry has been developed to deposit GaAs, the quintessential compound semiconductor. The ALD process is based on a dechlorosilylation reaction between GaCl3 and (Et3Si)3As. Characteristic ALD growth was demonstrated, indicating good applicability of the alkylsilyl arsenide precursor. ALD of GaAs produced uniform, amorphous and stoichiometric films with low impurity content. This was done with saturating growth rates and an easily controlled film thickness. Crystallization was achieved by annealing. Even though the growth rate strongly decreased with increasing deposition temperature, good quality film growth was demonstrated at 175 to 200 °C, indicating the presence of an ALD wind…

compound semiconductorsMaterials scienceAnnealing (metallurgy)Analytical chemistry02 engineering and technology010402 general chemistryEpitaxy01 natural sciencesArsenidelaw.inventionAtomic layer depositionchemistry.chemical_compoundGallium arsenideImpuritylawMaterials ChemistryThin filmCrystallizationta216ta116ta114General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesAmorphous solidamorphous filmschemistry0210 nano-technologystoichiometric filmsJournal of Materials Chemistry C
researchProduct

Crystallization kinetics of amorphous SiC films: Influence of substrate

2005

Abstract The crystallization kinetics of amorphous silicon carbide films was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films were deposited by radio frequency (r.f.) magnetron sputtering on glassy carbon and single crystalline silicon substrates, respectively. TEM micrographs and XRD patterns show the formation of nano-crystalline β-SiC with crystallite sizes in the order of 50 nm during annealing at temperatures between 1200 and 1600 °C. A modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) formalism was used to describe the isothermal transformation of amorphous SiC into β-SiC as an interface controlled, three-dimensional growth processes fr…

Amorphous siliconMaterials scienceSiliconGeneral Physics and Astronomychemistry.chemical_elementGlassy carbonlaw.inventionchemistry.chemical_compoundsilicon carbidelawcrystallization kineticsCrystalline siliconCrystallizationsputter depositionSurfaces and InterfacesGeneral ChemistrySputter depositionCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidamorphous filmsCrystallographychemistryChemical engineering[ CHIM.MATE ] Chemical Sciences/Material chemistryCrystalliteApplied Surface Science
researchProduct

Studies on atomic layer deposition of IRMOF-8 thin films

2015

Deposition of IRMOF-8 thin films by atomic layer deposition was studied at 260–320 C. Zinc acetate and 2,6-naphthalenedicarboxylic acid were used as the precursors. The as-deposited amorphous films were crystallized in 70% relative humidity at room temperature resulting in an unknown phase with a large unit cell. An autoclave with dimethylformamide as the solvent was used to recrystallize the films into IRMOF-8 as confirmed by grazing incidence x-ray diffraction. The films were further characterized by high temperature x-ray diffraction (HTXRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), time-of-flight elastic recoil detection analysis (TOF-…

Scanning electron microscopeAnalytical chemistryfield emission microscopesInfrared spectroscopyAtomic layer depositionThin filmFourier transform infrared spectroscopyta116kuormausta114ChemistrySurfaces and InterfacesatomikerroskasvatusCondensed Matter PhysicspalladiumX-ray diffractionSurfaces Coatings and FilmsAmorphous solidfourier transform infrared spectroscopyElastic recoil detectionamorphous filmsloadingCarbon filmthin filmsenergy dispersive spectroscopyatomic layer depositionX-ray spectroscopyohutkalvotzinc compoundsscanning electron microscopyJournal of Vacuum Science and Technology A
researchProduct